Machine failure prediction technique using recurrent neural network long short-term memory-particle swarm optimization algorithm

This paper proposes a hybrid prediction technique based on Recurrent Neural Network Long-Short-Term Memory (RNN-LSTM) with the integration of Particle Swarm Optimization (PSO) algorithm to estimate the Remaining Useful Life (RUL) of machines. LSTM is an improvement of RNN as RNN faces issues with pr...

詳細記述

保存先:
書誌詳細
主要な著者: Rashid, N.A., Abdul Aziz, I., Hasan, M.H.B.
フォーマット: 論文
出版事項: Springer Verlag 2019
オンライン・アクセス:https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065925843&doi=10.1007%2f978-3-030-19810-7_24&partnerID=40&md5=f32eb9404f711e8e244ade6d877db179
http://eprints.utp.edu.my/23513/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!