Machine failure prediction technique using recurrent neural network long short-term memory-particle swarm optimization algorithm
This paper proposes a hybrid prediction technique based on Recurrent Neural Network Long-Short-Term Memory (RNN-LSTM) with the integration of Particle Swarm Optimization (PSO) algorithm to estimate the Remaining Useful Life (RUL) of machines. LSTM is an improvement of RNN as RNN faces issues with pr...
保存先:
主要な著者: | , , |
---|---|
フォーマット: | 論文 |
出版事項: |
Springer Verlag
2019
|
オンライン・アクセス: | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85065925843&doi=10.1007%2f978-3-030-19810-7_24&partnerID=40&md5=f32eb9404f711e8e244ade6d877db179 http://eprints.utp.edu.my/23513/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|