A deep neural networks-based image reconstruction algorithm for a reduced sensor model in large-scale tomography system
Image reconstruction for soft-field tomography is a highly nonlinear and ill-posed inverse problem. Owing to the highly complicated nature of soft-field, the reconstructed images are always poor in quality. One of the factors that affect image quality is the number of sensors in a tomography system....
保存先:
主要な著者: | Lee, Chau Ching, Rahiman, Mohd. Hafiz Fazalul, Leow, Pei Ling, Abdul Rahim, Ruzairi, Ahmad Saad, Fathinul Syahir |
---|---|
フォーマット: | 論文 |
出版事項: |
Elsevier Ltd
2022
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/99457/ http://dx.doi.org/10.1016/j.flowmeasinst.2022.102234 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
A supervised deep feedforward neural network (SDFNN)-based image reconstruction algorithm for radio tomographic imaging
著者:: Lee, Chau Ching, 等
出版事項: (2021) -
Image reconstruction algorithms for ultrasonic tomography
著者:: Rahiman, Mohd. Hafiz Fazalul, 等
出版事項: (2011) -
Eminent pixel reconstruction algorithm for ultrasonic tomography
著者:: Nor Ayob, Nor Muzakkir, 等
出版事項: (2011) -
Image reconstruction using iterative transpose algorithm for optical tomography
著者:: Md. Yunos, Yusri, 等
出版事項: (2007) -
A novel hybrid binary reconstruction algorithm for ultrasonic tomography
著者:: Abdul Rahim, R., 等
出版事項: (2008)