Privacy preserving data mining using anonymization and K-means clustering on labor dataset
Privacy Preserving Data Mining (PPDM) has recently become an important research area. There are some issues and problems related to PPDM have been identified. Information loss occur when the original of data are modified to keep the privacy of those data. Effects of PPDM also cause the level of data...
Saved in:
主要作者: | Ahmad Zahari, Samahah Solehah |
---|---|
格式: | Thesis |
語言: | English |
出版: |
2019
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/96295/1/SamahahSolehahMSC2019.pdf.pdf http://eprints.utm.my/id/eprint/96295/ http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:143456 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
State-of-the-art in privacy preserved k-anonymity revisited
由: Alsahib S. Aldeen, Yousra Abdul, et al.
出版: (2016) -
Privacy preserving data mining based on geometrical data transformation method (GDTM) and k-means clustering algorithm
由: Sirat @ Md. Siraj, Maheyzah, et al.
出版: (2018) -
Cloud based privacy preserving data mining model using hybrid k-anonymity and partial homomorphic encryption
由: Mansour Osman, Huda Osman
出版: (2022) -
Data anonymization using pseudonym system to preserve data privacy
由: Razak, S. A., et al.
出版: (2020) -
Collaborative healthcare information systems in privacy preservation based on K-anonymization model / Asmaa Hatem Rashid
由: Rashid, Asmaa Hatem
出版: (2014)