Privacy preserving data mining using anonymization and K-means clustering on labor dataset
Privacy Preserving Data Mining (PPDM) has recently become an important research area. There are some issues and problems related to PPDM have been identified. Information loss occur when the original of data are modified to keep the privacy of those data. Effects of PPDM also cause the level of data...
محفوظ في:
المؤلف الرئيسي: | Ahmad Zahari, Samahah Solehah |
---|---|
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://eprints.utm.my/id/eprint/96295/1/SamahahSolehahMSC2019.pdf.pdf http://eprints.utm.my/id/eprint/96295/ http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:143456 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
State-of-the-art in privacy preserved k-anonymity revisited
بواسطة: Alsahib S. Aldeen, Yousra Abdul, وآخرون
منشور في: (2016) -
Privacy preserving data mining based on geometrical data transformation method (GDTM) and k-means clustering algorithm
بواسطة: Sirat @ Md. Siraj, Maheyzah, وآخرون
منشور في: (2018) -
Cloud based privacy preserving data mining model using hybrid k-anonymity and partial homomorphic encryption
بواسطة: Mansour Osman, Huda Osman
منشور في: (2022) -
Data anonymization using pseudonym system to preserve data privacy
بواسطة: Razak, S. A., وآخرون
منشور في: (2020) -
Collaborative healthcare information systems in privacy preservation based on K-anonymization model / Asmaa Hatem Rashid
بواسطة: Rashid, Asmaa Hatem
منشور في: (2014)