Modelling and control of fouling in submerged membrane bioreactor using neural network internal model control

Membrane bioreactor (MBR) is one of the best solutions for water and wastewater treatment systems in producing high quality effluent that meets its standard regulations. However, fouling is one of the main issues in membrane filtration for membrane bioreactor system. The prediction of fouling is cru...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Mahmod, Nurazizah, Abdul Wahab, Norhaliza, Gaya, Muhammad Sani
التنسيق: مقال
اللغة:English
منشور في: Institute of Advanced Engineering and Science 2020
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utm.my/id/eprint/93386/1/NorhalizaAbdWahab2020_ModellingAndControlOfFoulingInSubmergedMembrane.pdf
http://eprints.utm.my/id/eprint/93386/
http://dx.doi.org/10.11591/ijai.v9.i1.pp100-108
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Membrane bioreactor (MBR) is one of the best solutions for water and wastewater treatment systems in producing high quality effluent that meets its standard regulations. However, fouling is one of the main issues in membrane filtration for membrane bioreactor system. The prediction of fouling is crucial in the membrane bioreactor control system design. This paper presents an intelligence modeling system so called artificial neural network (ANN). The feedforward neural network (FFNN), radial basis function neural network (RBFNN) and nonlinear autoregressive exogenous neural network (NARXNN) are applied to model the submerged MBR filtration system. The simulation results show good predictions for all methods which the highest performance of the model given by RBFNN. Based on the developed models, the neural network internal model control (NNIMC) is implemented to control fouling development in membrane filtration process. Three different control structures of the NNIMC are proposed. The FFNN IMC, RBFNN IMC and NARXNN IMC controllers are compared to the conventional IMC. The RBFNN IMC has a superior performance both in tracking and disturbance rejections.