Photocatalytic degradation of phenol over visible light active ZnO/Ag2CO3/Ag2O nanocomposites heterojunction

In this paper, ZnO heterojunction with Ag 2 CO 3 /Ag 2 O mixed phase was synthesized by precipitation and phase transformation routes. The synthesized photocatalysts were characterized by X-ray diffraction (XRD), BET specific surface area, field emission scanning electron microscopy (FESEM), transmi...

全面介紹

Saved in:
書目詳細資料
Main Authors: Rosman, Nurafiqah, Wan Salleh, Wan Norharyati, Ismail, Ahmad Fauzi, Jaafar, Juhana, Harun, Zawati, Aziz, Farhana, Mohamed, Mohamad Azuwa, Ohtani, Bunsho, Takashima, Mai
格式: Article
出版: Elsevier B.V. 2018
主題:
在線閱讀:http://eprints.utm.my/id/eprint/84628/
http://dx.doi.org/10.1016/j.jphotochem.2018.06.029
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:In this paper, ZnO heterojunction with Ag 2 CO 3 /Ag 2 O mixed phase was synthesized by precipitation and phase transformation routes. The synthesized photocatalysts were characterized by X-ray diffraction (XRD), BET specific surface area, field emission scanning electron microscopy (FESEM), transmission electron microscopy along with energy-dispersive X-ray (TEM-EDX), Fourier transform infrared (FTIR), UV–vis-NIR spectrophotometer to reveal their phase, morphology, purity, and optical properties. The photocatalytic activity of the obtained nanocomposites was measured by the degradation of phenol under visible light irradiation. The results demonstrated that, the heterojunction mixed phase of Ag 2 CO 3 /Ag 2 O over ZnO surfaces has major effect on establishing the performance of the phenol photodegradation process. It can be noted that the Ag 2 O crystal's growth over Ag 2 CO 3 heterojunction on ZnO lattice, effectively facilitate charge transfer and suppress recombination of photogenerated electrons and holes, leading to highest impact phenol degradation. The synthesized photocatalyst displayed excellent properties, showing a potential industrial application for the treatment of phenolic wastewater.