A sparse QSRR model for predicting retention indices of essential oils based on robust screening approach
A robust screening approach and a sparse quantitative structure–retention relationship (QSRR) model for predicting retention indices (RIs) of 169 constituents of essential oils is proposed. The proposed approach is represented in two steps. First, dimension reduction was performed using the proposed...
保存先:
主要な著者: | Al Fakih, A. M., Algamal, Z. Y., Lee, M. H., Aziz, M. |
---|---|
フォーマット: | 論文 |
出版事項: |
Taylor and Francis Ltd.
2017
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/75754/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030458483&doi=10.1080%2f1062936X.2017.1375010&partnerID=40&md5=47d22807f6a4795a52fa1244310bb90b |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Quantitative structure-property relationship modelling for predicting retention indices of essential oils based on an improved horse herd optimization algorithm
著者:: Alharthi, Aiedh Mrisi, 等
出版事項: (2023) -
Quantitative structure–activity relationship model for prediction study of corrosion inhibition efficiency using two-stage sparse multiple linear regression
著者:: Al-Fakih, A. M., 等
出版事項: (2016) -
Predicting retention times of naturally occurring phenolic compounds in reversed-phase liquid chromatography: a quantitative structure-retention relationship (QSRR) approach
著者:: Akbar, Jamshed, 等
出版事項: (2012) -
High-dimensional QSAR classification model for anti-hepatitis C virus activity of thiourea derivatives based on the sparse logistic regression model with a bridge penalty
著者:: Algamal, Z. Y., 等
出版事項: (2017) -
High-dimensional QSAR modelling using penalized linear regression model with L1/2-norm
著者:: Algamal, Z. Y., 等
出版事項: (2016)