Adaptive GRNN for the modelling of dynamic plants

An integrated General Regression Neural Network (GRNN) adaptation scheme for dynamic plant modelling is proposed in this paper. It possesses several distinguished features compared to the original GRNN proposed by Specht [1], such as flexible pattern nodes add-in and delete-off mechanism, dynamic in...

詳細記述

保存先:
書誌詳細
主要な著者: Yusof, Rubiyah, Khalid, Marzuki, Teo, Lian Seng
フォーマット: Conference or Workshop Item
言語:English
出版事項: 2002
主題:
オンライン・アクセス:http://eprints.utm.my/id/eprint/7326/1/YusofRubiyah2002_Adaptive_GRNN_Modelling_Dynamic_Plants.pdf
http://eprints.utm.my/id/eprint/7326/
https://dx.doi.org/10.1109/ISIC.2002.1157765
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:An integrated General Regression Neural Network (GRNN) adaptation scheme for dynamic plant modelling is proposed in this paper. It possesses several distinguished features compared to the original GRNN proposed by Specht [1], such as flexible pattern nodes add-in and delete-off mechanism, dynamic initial sigma assignment using non-statistical method, automatic target adjustment and sigma tuning. These adaptation strategies are formulated based on the inherent advantageous features found in GRNN, such as highly localised pattern nodes, good interpolation capability, instantaneous learning, etc.. Good modelling performance was obtained when the GRNN is tested on a linear plant in a noisy environment. It performs better than the well-known Extended Recursive Least Squares identification algorithm. In this paper, analysis on the effects of some of the adaptation parameters involving a nonlinear plant is also investigated. The results show that the proposed methodology is computationally efficient and exhibits several attractive features such as fast learning, flexible network sizing and good robustness, which are suitable for the construction of estimators or predictors for many model-based adaptive control strategies.