A hybrid SVM-FFA method for prediction of monthly mean global solar radiation
In this study, a hybrid support vector machine–firefly optimization algorithm (SVM-FFA) model is proposed to estimate monthly mean horizontal global solar radiation (HGSR). The merit of SVM-FFA is assessed statistically by comparing its performance with three previously used approaches. Using each a...
保存先:
主要な著者: | Shamshirband, S., Mohammadi, K., Tong, C. W., Zamani, M., Motamedi, S., Ch, S. |
---|---|
フォーマット: | 論文 |
出版事項: |
Springer-Verlag Wien
2016
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/71600/ https://www.scopus.com/inward/record.uri?eid=2-s2.0-84929121341&doi=10.1007%2fs00704-015-1482-2&partnerID=40&md5=1def2bb03ee03f7367bb1be94bf47d67 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Temperature-based estimation of global solar radiation using soft computing methodologies
著者:: Mohammadi, K., 等
出版事項: (2016) -
Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation
著者:: Halabi, Laith M., 等
出版事項: (2018) -
Day of the year-based prediction of horizontal global solar radiation by a neural network auto-regressive model
著者:: Gani, Abdullah, 等
出版事項: (2016) -
A novel method to water level prediction using RBF and FFA
著者:: Soleymani, S. A., 等
出版事項: (2016) -
Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: a case study for Iran
著者:: Shamshirband, Shahaboddin, 等
出版事項: (2015)