Composite kernels for support vector classification of hyper-spectral data
The incorporation of prior knowledge into the Support Vector Machine (SVM) architecture is a problem which if solved can lead to much more accurate classifiers in the near future. This result could be particularly effective in the classification of remote sensing imagery, where an abundance of infor...
Saved in:
Main Authors: | Kohram, Mojtaba, Md. Sap, Mohd. Noor |
---|---|
格式: | Book Section |
出版: |
Springer Verlag
2008
|
主題: | |
在線閱讀: | http://eprints.utm.my/id/eprint/12518/ http://dx.doi.org/10.1007/978-3-540-88636-535 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Support vector classification of remote sensing images using improved spectral Kernels
由: Md. Sap, Mohd. Noor, et al.
出版: (2008) -
Spectral angle based kernels for the classification of hyperspectral images using support vector machines
由: Sap, M. N. N., et al.
出版: (2008) -
A review of support vector machines with respect to spatial data
由: Kohram, Mojtaba, et al.
出版: (2007) -
Integration of spectral information into support vector machine for land cover classification
由: Md. Sap, Mohd. Noor, et al.
出版: (2007) -
Modelling kernel methods for unsupervised learning of micro array data
由: Md. Sap, Mohd. Noor
出版: (2008)