Composite kernels for support vector classification of hyper-spectral data
The incorporation of prior knowledge into the Support Vector Machine (SVM) architecture is a problem which if solved can lead to much more accurate classifiers in the near future. This result could be particularly effective in the classification of remote sensing imagery, where an abundance of infor...
保存先:
主要な著者: | Kohram, Mojtaba, Md. Sap, Mohd. Noor |
---|---|
フォーマット: | Book Section |
出版事項: |
Springer Verlag
2008
|
主題: | |
オンライン・アクセス: | http://eprints.utm.my/id/eprint/12518/ http://dx.doi.org/10.1007/978-3-540-88636-535 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Support vector classification of remote sensing images using improved spectral Kernels
著者:: Md. Sap, Mohd. Noor, 等
出版事項: (2008) -
Spectral angle based kernels for the classification of hyperspectral images using support vector machines
著者:: Sap, M. N. N., 等
出版事項: (2008) -
A review of support vector machines with respect to spatial data
著者:: Kohram, Mojtaba, 等
出版事項: (2007) -
Integration of spectral information into support vector machine for land cover classification
著者:: Md. Sap, Mohd. Noor, 等
出版事項: (2007) -
Modelling kernel methods for unsupervised learning of micro array data
著者:: Md. Sap, Mohd. Noor
出版事項: (2008)