Design of an efficient spiking neural network for human activity recognition

Human activity recognition (HAR) using Wi-Fi Channel State Information (CSI) has attracted significant interest as an alternative to conventional methods due to its potential to address human privacy concerns. While Long Short-Term Memory (LSTM) models have shown promising results in HAR, their reso...

詳細記述

保存先:
書誌詳細
第一著者: Tan, Yee Leong
フォーマット: 学位論文
言語:English
English
出版事項: 2024
オンライン・アクセス:http://eprints.utem.edu.my/id/eprint/27405/1/Design%20of%20an%20efficient%20spiking%20neural%20network%20for%20human%20activity%20recognition.pdf
http://eprints.utem.edu.my/id/eprint/27405/2/Design%20of%20an%20efficient%20spiking%20neural%20network%20for%20human%20activity%20recognition.pdf
http://eprints.utem.edu.my/id/eprint/27405/
https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=123434
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!