Blood cell image segmentation using hybrid K-means and median-cut algorithms
In blood cell image analysis, segmentation is crucial step in quantitative cytophotometry. Blood cell images have become particularly useful in medical diagnostics tools for cases involving blood. In this paper, we present a better approach on merging segmentation algorithms of K-means and Median-cu...
保存先:
主要な著者: | T.Z.T., Muda,, R.A., Salam, |
---|---|
フォーマット: | Conference Paper |
言語: | en_US |
出版事項: |
2015
|
主題: | |
オンライン・アクセス: | http://ddms.usim.edu.my/handle/123456789/9049 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Image segmentation using an adaptive clustering technique for the detection of acute leukemia blood cells images
著者:: F.H.A., Jabar,, 等
出版事項: (2015) -
Outlier rejection fuzzy c-means (ORFCM) algorithm for image segmentation
著者:: Fasahat Ullah, Siddiqui, 等
出版事項: (2014) -
Cluster approach for auto segmentation of blast in acute leukimia blood slide images
著者:: N. H., Harun, 等
出版事項: (2011) -
Colour image segmentation of malaria parasites in thin blood smears using C-Y colour model and K-Means clustering
著者:: A.S., Abdul Nasir, 等
出版事項: (2013) -
Modification of ANOVA with various types of means
著者:: Nur Farah Najeeha, Najdi, 等
出版事項: (2020)