Nonmonotone spectral gradient method based on memoryless symmetric rank-one update for large-scale unconstrained optimization

This paper proposes a nonmonotone spectral gradient method for solving large-scale unconstrained optimization problems. The spectral parameter is derived from the eigenvalues of an optimally sized memoryless symmetric rank-one matrix obtained under the measure defined as a ratio of the determinant...

詳細記述

保存先:
書誌詳細
主要な著者: Hong, Seng Sim, Chuei, Yee Chen, Wah, June Leong, Jiao, Li
フォーマット: 論文
出版事項: American Institute of Mathematical Sciences 2021
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/94373/
https://www.aimsciences.org/article/doi/10.3934/jimo.2021143
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!