Univariate generalized additive models for simulated stationary and non-stationary generalized Pareto distribution

Generalized additive models as a predictor in regression approaches, are made up over cubic spline basis and penalized regression splines. Despite of linear predictor in GLM, generalized additive models use a sum of smooth functions of covariates as a predictor. The data which are used in this study...

詳細記述

保存先:
書誌詳細
主要な著者: Behzadi, Mostafa, Adam, Mohd Bakri, Fitrianto, Anwar
フォーマット: 論文
言語:English
出版事項: Science Publications 2017
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/63632/1/Univariate%20Generalized%20Additive%20Models%20for%20Simulated%20Stationary%20and%20Non-Stationary%20Generalized%20Pareto%20Distribution.pdf
http://psasir.upm.edu.my/id/eprint/63632/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
このレコードへの初めてのコメントを付けませんか!
この操作にはログインが必要です