Sequential process of feature extraction methods for artificial neural network in short term load forecasting
The first stage of feature extraction involves a transformation of raw data that is from the chronological hourly peak loads to the multiple time lags of hourly peak loads. This is followed by the next feature extraction wherein the principal component analysis (PCA) is used to further improve the i...
保存先:
主要な著者: | , , , |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Asian Research Publishing Network (ARPN)
2015
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/46265/1/Sequential%20process%20of%20feature%20extraction%20methods%20for%20artificial%20neural%20network%20in%20short%20term%20load%20forecasting.pdf http://psasir.upm.edu.my/id/eprint/46265/ http://www.arpnjournals.com/jeas/volume_19_2015.htm |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|