Quadrature formula for evaluating left bounded Hadamard type hypersingular integrals

Left semi-bounded Hadamard type Hypersingular integral (HSI) of the form H(h,x)=1/π1+x/1-x λ-1∗∗1 1-t/1+t h(t)(t-x)2dt,x∈(-1.1), Where h(t) is a smooth function is considered. The automatic quadrature scheme (AQS) is constructed by approximating the density function h(t) by the truncated Chebyshev p...

詳細記述

保存先:
書誌詳細
主要な著者: Bichi, Sirajo Lawan, Eshkuvatov, Zainidin K., Nik Long, Nik Mohd Asri, Okhunov, Abdurahim
フォーマット: Conference or Workshop Item
言語:English
出版事項: AIP Publishing LLC 2014
オンライン・アクセス:http://psasir.upm.edu.my/id/eprint/35124/1/Quadrature%20formula%20for%20evaluating%20left%20bounded%20Hadamard%20type%20hypersingular%20integrals.pdf
http://psasir.upm.edu.my/id/eprint/35124/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:Left semi-bounded Hadamard type Hypersingular integral (HSI) of the form H(h,x)=1/π1+x/1-x λ-1∗∗1 1-t/1+t h(t)(t-x)2dt,x∈(-1.1), Where h(t) is a smooth function is considered. The automatic quadrature scheme (AQS) is constructed by approximating the density function h(t) by the truncated Chebyshev polynomials of the fourth kind. Numerical results revealed that the proposed AQS is highly accurate when h(t) is choosing to be the polynomial and rational functions. The results are in line with the theoretical findings.