Quadrature formula for evaluating left bounded Hadamard type hypersingular integrals
Left semi-bounded Hadamard type Hypersingular integral (HSI) of the form H(h,x)=1/π1+x/1-x λ-1∗∗1 1-t/1+t h(t)(t-x)2dt,x∈(-1.1), Where h(t) is a smooth function is considered. The automatic quadrature scheme (AQS) is constructed by approximating the density function h(t) by the truncated Chebyshev p...
保存先:
主要な著者: | , , , |
---|---|
フォーマット: | Conference or Workshop Item |
言語: | English |
出版事項: |
AIP Publishing LLC
2014
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/35124/1/Quadrature%20formula%20for%20evaluating%20left%20bounded%20Hadamard%20type%20hypersingular%20integrals.pdf http://psasir.upm.edu.my/id/eprint/35124/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
要約: | Left semi-bounded Hadamard type Hypersingular integral (HSI) of the form H(h,x)=1/π1+x/1-x λ-1∗∗1 1-t/1+t h(t)(t-x)2dt,x∈(-1.1), Where h(t) is a smooth function is considered. The automatic quadrature scheme (AQS) is constructed by approximating the density function h(t) by the truncated Chebyshev polynomials of the fourth kind. Numerical results revealed that the proposed AQS is highly accurate when h(t) is choosing to be the polynomial and rational functions. The results are in line with the theoretical findings. |
---|