Quadrature formula for evaluating left bounded Hadamard type hypersingular integrals

Left semi-bounded Hadamard type Hypersingular integral (HSI) of the form H(h,x)=1/π1+x/1-x λ-1∗∗1 1-t/1+t h(t)(t-x)2dt,x∈(-1.1), Where h(t) is a smooth function is considered. The automatic quadrature scheme (AQS) is constructed by approximating the density function h(t) by the truncated Chebyshev p...

全面介紹

Saved in:
書目詳細資料
Main Authors: Bichi, Sirajo Lawan, Eshkuvatov, Zainidin K., Nik Long, Nik Mohd Asri, Okhunov, Abdurahim
格式: Conference or Workshop Item
語言:English
出版: AIP Publishing LLC 2014
在線閱讀:http://psasir.upm.edu.my/id/eprint/35124/1/Quadrature%20formula%20for%20evaluating%20left%20bounded%20Hadamard%20type%20hypersingular%20integrals.pdf
http://psasir.upm.edu.my/id/eprint/35124/
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Left semi-bounded Hadamard type Hypersingular integral (HSI) of the form H(h,x)=1/π1+x/1-x λ-1∗∗1 1-t/1+t h(t)(t-x)2dt,x∈(-1.1), Where h(t) is a smooth function is considered. The automatic quadrature scheme (AQS) is constructed by approximating the density function h(t) by the truncated Chebyshev polynomials of the fourth kind. Numerical results revealed that the proposed AQS is highly accurate when h(t) is choosing to be the polynomial and rational functions. The results are in line with the theoretical findings.