Quadrature formula for evaluating left bounded Hadamard type hypersingular integrals

Left semi-bounded Hadamard type Hypersingular integral (HSI) of the form H(h,x)=1/π1+x/1-x λ-1∗∗1 1-t/1+t h(t)(t-x)2dt,x∈(-1.1), Where h(t) is a smooth function is considered. The automatic quadrature scheme (AQS) is constructed by approximating the density function h(t) by the truncated Chebyshev p...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Bichi, Sirajo Lawan, Eshkuvatov, Zainidin K., Nik Long, Nik Mohd Asri, Okhunov, Abdurahim
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: AIP Publishing LLC 2014
الوصول للمادة أونلاين:http://psasir.upm.edu.my/id/eprint/35124/1/Quadrature%20formula%20for%20evaluating%20left%20bounded%20Hadamard%20type%20hypersingular%20integrals.pdf
http://psasir.upm.edu.my/id/eprint/35124/
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Left semi-bounded Hadamard type Hypersingular integral (HSI) of the form H(h,x)=1/π1+x/1-x λ-1∗∗1 1-t/1+t h(t)(t-x)2dt,x∈(-1.1), Where h(t) is a smooth function is considered. The automatic quadrature scheme (AQS) is constructed by approximating the density function h(t) by the truncated Chebyshev polynomials of the fourth kind. Numerical results revealed that the proposed AQS is highly accurate when h(t) is choosing to be the polynomial and rational functions. The results are in line with the theoretical findings.