Binary ant colony optimization algorithm in learning random satisfiability logic for discrete hopfield neural network

This study introduced a novel ant colony optimization algorithm that implements the population selection strategy of the Estimation of Distribution Algorithm and a new pheromone updating formula. It aimed to optimize the performance of G-type random high-order satisfiability logic structures embedde...

全面介绍

Saved in:
书目详细资料
Main Authors: Gao, Yuan, Mohd Kasihmuddin, Mohd Shareduwan, Chen, Ju, Zheng, Chengfeng, Romli, Nurul Atiqah, Mansor, Mohd. Asyraf, Zamri, Nur Ezlin
格式: Article
语言:English
出版: Elsevier 2024
在线阅读:http://psasir.upm.edu.my/id/eprint/114433/1/114433.pdf
http://psasir.upm.edu.my/id/eprint/114433/
https://linkinghub.elsevier.com/retrieve/pii/S1568494624009669
标签: 添加标签
没有标签, 成为第一个标记此记录!