Binary ant colony optimization algorithm in learning random satisfiability logic for discrete hopfield neural network
This study introduced a novel ant colony optimization algorithm that implements the population selection strategy of the Estimation of Distribution Algorithm and a new pheromone updating formula. It aimed to optimize the performance of G-type random high-order satisfiability logic structures embedde...
Saved in:
Main Authors: | , , , , , , |
---|---|
格式: | Article |
语言: | English |
出版: |
Elsevier
2024
|
在线阅读: | http://psasir.upm.edu.my/id/eprint/114433/1/114433.pdf http://psasir.upm.edu.my/id/eprint/114433/ https://linkinghub.elsevier.com/retrieve/pii/S1568494624009669 |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|