Binary ant colony optimization algorithm in learning random satisfiability logic for discrete hopfield neural network
This study introduced a novel ant colony optimization algorithm that implements the population selection strategy of the Estimation of Distribution Algorithm and a new pheromone updating formula. It aimed to optimize the performance of G-type random high-order satisfiability logic structures embedde...
保存先:
主要な著者: | , , , , , , |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Elsevier
2024
|
オンライン・アクセス: | http://psasir.upm.edu.my/id/eprint/114433/1/114433.pdf http://psasir.upm.edu.my/id/eprint/114433/ https://linkinghub.elsevier.com/retrieve/pii/S1568494624009669 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|