Trigonometric-Euclidean-Smoother Interpolator (TESI) for continuous time-series and non-time-series data augmentation for deep neural network applications in agriculture
Biomass estimation, fertilisation, and crop production reflect crop yield potential. The prediction of these variables allows the selection of crop cultivars with high yield potential. Deep neural networks (DNNs) can predict such crop variables. However, DNNs are data greedy algorithms that overfit/...
Saved in:
Main Authors: | Derraz, Radhwane, Muharam, Farrah Melissa, Jaafar, Noraini Ahmad, Yap, Ng Keng |
---|---|
格式: | Article |
出版: |
Elsevier
2023
|
在线阅读: | http://psasir.upm.edu.my/id/eprint/108355/ https://www.sciencedirect.com/science/article/abs/pii/S0168169923000340?via%3Dihub |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
A hybrid fuzzy time series forecasting model with 4253HT smoother
由: Nik Muhammad Farhan Hakim, Nik Badrul Alam, et al.
出版: (2023) -
Ensemble and single algorithm models to handle multicollinearity of UAV vegetation indices for predicting rice biomass
由: Derraz, Radhwane, et al.
出版: (2023) -
Determination of trigonometric Fourier’s series by the method of four-dimensional mathematics
由: A. T., Rakhymova, et al.
出版: (2021) -
Prediction of rice biomass using machine learning algorithms
由: Radhwane, Derraz
出版: (2022) -
Ensemble augmentation for deep neural networks using 1-D time series vibration data
由: Faysal, Atik, et al.
出版: (2023)