Hybrid artificial immune system-genetic algorithm optimization based on mathematical test functions

This paper demonstrates a hybrid between two optimization methods that are Artificial Immune System (AIS) and Genetic Algorithm (GA). The capability of overcoming the shortcomings of individual algorithms without losing their advantages makes the hybrid techniques superior to the stand-alone ones ba...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ali, M.O., Koh, S.P., Chong, K.H., Yap, D.F.W.
格式: Conference Paper
語言:en_US
出版: 2017
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:This paper demonstrates a hybrid between two optimization methods that are Artificial Immune System (AIS) and Genetic Algorithm (GA). The capability of overcoming the shortcomings of individual algorithms without losing their advantages makes the hybrid techniques superior to the stand-alone ones based on the dominant purpose of hybridization. The improvement of the results that enable to get it if GA and AIS work separately is the main objective of this hybrid. The hybrid includes two processes; firstly, AIS is the attraction among the researchers as the algorithm. This enables it to develop local searching ability and efficiency yet the convergence rate for AIS is preferably not precise compared to the GA. Secondly, a Genetic Algorithm is typically initializing population randomly. The last generation of AIS will be the input to the next process of the hybrid which is the GA in this hybrid AIS-GA. Hybrid makes GA enters the stage of standard solutions more rapidly and more accurate compared with GA initialized population at random. To differentiate between the results in terms of achieving the minimum value for these functions, eight mathematical test functions are being used to make comparison. ©2010 IEEE.