Influence of Nanoparticles on Thermophysical Properties of Hybrid Nanofluids of Different Volume Fractions

Nanofluids are frequently employed in numerous heat transfer applications due to their improved thermophysical properties compared to a base fluid. By selecting suitable combinations of nanoparticles, hybrid nanofluids can have better thermophysical properties than mono nanofluids. Thus, this study...

全面介绍

Saved in:
书目详细资料
Main Authors: Abdullah M.Z., Yu K.H., Loh H.Y., Kamarudin R., Gunnasegaran P., Alkhwaji A.
其他作者: 31567537400
格式: Article
出版: MDPI 2023
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:Nanofluids are frequently employed in numerous heat transfer applications due to their improved thermophysical properties compared to a base fluid. By selecting suitable combinations of nanoparticles, hybrid nanofluids can have better thermophysical properties than mono nanofluids. Thus, this study examines the effect of volume fractions of hybrid nanofluids on different thermophysical properties, such as density, thermal conductivity, specific heat, and dynamic viscosity. Thermophysical properties of copper�nickel (Cu�Ni) water-based hybrid nanofluids are determined using molecular dynamic (MD) simulation for different volume fractions of 0.1�0.3%. Results show that the density, thermal conductivity, and viscosity of Cu�Ni hybrid nanofluids increase with volume fraction, whereas the specific heat capacity at a constant pressure decreases with volume fraction. These properties are validated for the base fluid, mono nanofluids, and hybrid nanofluids. Results are in good agreement with previous findings. The thermophysical properties of Cu�Ni hybrid nanofluids significantly improve and have better characteristics for cooling fluids than the base fluid. � 2022 by the authors.