Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques
This study proposes two techniques: Deep Learning (DL) and Ensemble Deep Learning (EDL) to predict groundwater level (GWL) for five wells in Malaysia. Two scenarios were proposed, scenario-1 (S1): GWL from 4 wells was used as inputs to predict the GWL in the fifth well and scenario-2 (S2): time seri...
محفوظ في:
المؤلفون الرئيسيون: | Afan H.A., Ibrahem Ahmed Osman A., Essam Y., Ahmed A.N., Huang Y.F., Kisi O., Sherif M., Sefelnasr A., Chau K.-W., El-Shafie A. |
---|---|
مؤلفون آخرون: | 56436626600 |
التنسيق: | مقال |
منشور في: |
Taylor and Francis Ltd.
2023
|
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques
بواسطة: Afan, Haitham Abdulmohsin, وآخرون
منشور في: (2021) -
Past, Present and Perspective Methodology for Groundwater Modeling-Based Machine Learning Approaches
بواسطة: Osman A.I.A., وآخرون
منشور في: (2023) -
Groundwater level forecasting using ensemble coactive neuro-fuzzy inference system
بواسطة: Boo, Kenneth Beng Wee, وآخرون
منشور في: (2024) -
Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia
بواسطة: Ibrahem Ahmed Osman A., وآخرون
منشور في: (2023) -
Predicting suspended sediment load in Peninsular Malaysia using support vector machine and deep learning algorithms
بواسطة: Essam Y., وآخرون
منشور في: (2023)