Developing an ensembled machine learning prediction model for marine fish and aquaculture production
The fishing industry is identified as a strategic sector to raise domestic protein production and supply in Malaysia. Global changes in climatic variables have impacted and continue to impact marine fish and aquaculture production, where machine learning (ML) methods are yet to be extensively used t...
保存先:
主要な著者: | Rahman L.F., Marufuzzaman M., Alam L., Bari M.A., Sumaila U.R., Sidek L.M. |
---|---|
その他の著者: | 36984229900 |
フォーマット: | 論文 |
出版事項: |
MDPI AG
2023
|
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Application of Machine Learning to Investigate the Impact of Climatic Variables on Marine Fish Landings
著者:: Rahman L.F., 等
出版事項: (2023) -
A machine learning approach to predict the activity of smart home inhabitant
著者:: Marufuzzaman M., 等
出版事項: (2023) -
Traceability of sustainability and safety in fishery supply chain management systems using radio frequency identification technology
著者:: Rahman L.F., 等
出版事項: (2023) -
Developing an ensembled machine learning model for predicting water quality index in Johor River Basin
著者:: Sidek L.M., 等
出版事項: (2025) -
Betanodavirus infection in marine fish aquaculture in Malaysia
著者:: Julian Ransangan, 等
出版事項: (2013)