Developing an ensembled machine learning prediction model for marine fish and aquaculture production
The fishing industry is identified as a strategic sector to raise domestic protein production and supply in Malaysia. Global changes in climatic variables have impacted and continue to impact marine fish and aquaculture production, where machine learning (ML) methods are yet to be extensively used t...
محفوظ في:
المؤلفون الرئيسيون: | Rahman L.F., Marufuzzaman M., Alam L., Bari M.A., Sumaila U.R., Sidek L.M. |
---|---|
مؤلفون آخرون: | 36984229900 |
التنسيق: | مقال |
منشور في: |
MDPI AG
2023
|
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Application of Machine Learning to Investigate the Impact of Climatic Variables on Marine Fish Landings
بواسطة: Rahman L.F., وآخرون
منشور في: (2023) -
A machine learning approach to predict the activity of smart home inhabitant
بواسطة: Marufuzzaman M., وآخرون
منشور في: (2023) -
Traceability of sustainability and safety in fishery supply chain management systems using radio frequency identification technology
بواسطة: Rahman L.F., وآخرون
منشور في: (2023) -
Developing an ensembled machine learning model for predicting water quality index in Johor River Basin
بواسطة: Sidek L.M., وآخرون
منشور في: (2025) -
Betanodavirus infection in marine fish aquaculture in Malaysia
بواسطة: Julian Ransangan, وآخرون
منشور في: (2013)