Towards Automated Biometric Identification of Sea Turtles (Chelonia mydas)

Passive biometric identification enables wildlife monitoring with minimal disturbance. Using a motion-activated camera placed at an elevated position and facing downwards, we collected images of sea turtle carapace, each belonging to one of sixteen Chelonia mydas juveniles. We then learned co-varian...

全面介紹

Saved in:
書目詳細資料
Main Authors: Irwandi Hipni, Mohamad Hipiny, Hamimah, Ujir, Aazani, Mujahid, Nurhartini Kamalia, Yahya
格式: Article
語言:English
出版: ITB Journal Publisher 2018
主題:
在線閱讀:http://ir.unimas.my/id/eprint/47398/1/Towards%20Automated%20Biometric%20Identification%20of%20Sea%20Turtles%20%28Chelonia%20mydas%29%20-%20Copy.pdf
http://ir.unimas.my/id/eprint/47398/
https://journals.itb.ac.id/index.php/jictra/article/view/6909
https://doi.org/10.5614/itbj.ict.res.appl.2018.12.3.4
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Passive biometric identification enables wildlife monitoring with minimal disturbance. Using a motion-activated camera placed at an elevated position and facing downwards, we collected images of sea turtle carapace, each belonging to one of sixteen Chelonia mydas juveniles. We then learned co-variant and robust image descriptors from these images, enabling indexing and retrieval. In this work, we presented several classification results of sea turtle carapaces using the learned image descriptors. We found that a template-based descriptor, i.e., Histogram of Oriented Gradients (HOG) performed exceedingly better during classification than keypoint-based descriptors. For our dataset, a high-dimensional descriptor is a must due to the minimal gradient and color information inside the carapace images. Using HOG, we obtained an average classification accuracy of 65%.