Fatigue feature classification for automotive strain data
Fatigue strain signal were analysed using data segmentation and data clustering. For data segmentation, value of fatigue damage and global statistical signal analysis such as kurtosis was obtained using specific software. Data clustering were carried out using K-Mean clustering approaches. The objec...
Saved in:
Main Authors: | M. F. M., Yunoh, S., Abdullah, Z. M., Nopiah, M. Z., Nuawi, Nurazima, Ismail |
---|---|
格式: | Conference or Workshop Item |
语言: | English |
出版: |
IOP Publishing
2012
|
主题: | |
在线阅读: | http://umpir.ump.edu.my/id/eprint/25272/1/Fatigue%20feature%20classification%20for%20automotive%20strain%20data.pdf http://umpir.ump.edu.my/id/eprint/25272/ https://doi.org/10.1088/1757-899X/36/1/012031 |
标签: |
添加标签
没有标签, 成为第一个标记此记录!
|
相似书籍
-
Fatigue Features Extraction of Road Load Time Data Using the S-Transform
由: S., Abdullah, et al.
出版: (2013) -
Classification of Fatigue Damaging Segments Using Artificial Neural Network / M. F. M. Yunoh ...[et al.]
由: M. Yunoh, M. F., et al.
出版: (2018) -
Fatigue Life Prediction of Lower Suspension Arm Using
Strain-Life Approach
由: M. M., Rahman, et al.
出版: (2009) -
Relationship between time domain and frequency domain strain signal – Application to real data / A. A. A. Rahim ... [et al.]
由: A. Rahim, A. A., et al.
出版: (2018) -
Determining Damaging Fatigue Cycles under Influence of Random Loadings using the Root-Mean-Square Level / M. Mahmud ...[et al.]
由: Mahmud, M., et al.
出版: (2018)