Feature Selection using Binary Simulated Kalman Filter for Peak Classification of EEG Signals
Previously, an angle modulated simulated Kalman filter (AMSKF) algorithm has been implemented for feature selection in peak classification of electroencephalogram (EEG) signals. The AMSKF is an extension of simulated Kalman filter (SKF) algorithm for combinatorial optimization problems. In this pap...
保存先:
主要な著者: | , , , , , , , , |
---|---|
フォーマット: | Conference or Workshop Item |
言語: | English |
出版事項: |
IEEE
2018
|
主題: | |
オンライン・アクセス: | http://umpir.ump.edu.my/id/eprint/21377/1/Feature%20Selection%20using%20Binary%20Simulated%20Kalman%20Filter%20for%20Peak%20Classification1.pdf http://umpir.ump.edu.my/id/eprint/21377/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|