Feature Selection using Binary Simulated Kalman Filter for Peak Classification of EEG Signals

Previously, an angle modulated simulated Kalman filter (AMSKF) algorithm has been implemented for feature selection in peak classification of electroencephalogram (EEG) signals. The AMSKF is an extension of simulated Kalman filter (SKF) algorithm for combinatorial optimization problems. In this pap...

詳細記述

保存先:
書誌詳細
主要な著者: Badaruddin, Muhammad, Mohd Falfazli, Mat Jusof, Mohd Ibrahim, Shapiai, Asrul, Adam, Zulkifli, Md. Yusof, Kamil Zakwan, Mohd Azmi, Nor Hidayati, Abdul Aziz, Zuwairie, Ibrahim, Norrima, Mokhtar
フォーマット: Conference or Workshop Item
言語:English
出版事項: IEEE 2018
主題:
オンライン・アクセス:http://umpir.ump.edu.my/id/eprint/21377/1/Feature%20Selection%20using%20Binary%20Simulated%20Kalman%20Filter%20for%20Peak%20Classification1.pdf
http://umpir.ump.edu.my/id/eprint/21377/
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!