Novel approach to predicting soil permeability coefficient using Gaussian process regression
In the design stage of construction projects, determining the soil permeability coefficient is one of the most important steps in assessing groundwater, infiltration, runoff, and drainage. In this study, various kernel-function-based Gaussian process regression models were developed to estimate the...
保存先:
主要な著者: | Ahmad, Mahmood, Keawsawasvong, Suraparb, Ibrahim, Mohd Rasdan, Waseem, Muhammad, Kashyzadeh, Kazem Reza, Sabri, Mohanad Muayad Sabri |
---|---|
フォーマット: | 論文 |
出版事項: |
MDPI
2022
|
主題: | |
オンライン・アクセス: | http://eprints.um.edu.my/41646/ |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Extreme Gradient Boosting Algorithm for Predicting Shear
Strengths of Rockfill Materials
著者:: Ahmad, Mahmood, 等
出版事項: (2022) -
Predicting California bearing ratio of HARHA‑treated expansive soils using Gaussian process regression
著者:: Ahmad, Mahmood, 等
出版事項: (2023) -
Predicting subgrade resistance value of hydrated lime-activated rice husk ash-treated expansive soil: a comparison between M5P, support vector machine, and gaussian process regression algorithms
著者:: Ahmad, Mahmood, 等
出版事項: (2022) -
Prediction of ultimate bearing capacity of shallow foundations on cohesionless soils: a gaussian process regression approach
著者:: Ahmad, Mahmood, 等
出版事項: (2021) -
Prediction of rockfill materials’ shear strength using various kernel function-based regression models—a comparative perspective
著者:: Ahmad, Mahmood, 等
出版事項: (2022)