Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics

To date, the Smoothed Particle Hydrodynamics (SPH) method which is mesh-less and fully Lagrangian in nature has been mainly applied in solving solid heat conduction problem and flow convection problem separately. In the current work, we have implemented the Weakly Compressible Smoothed Particle Hydr...

全面介绍

Saved in:
书目详细资料
Main Authors: Ng, Khai Ching, Ng, Y.L., Sheu, Tony Wen Hann, Mukhtar, Azfarizal
格式: Article
语言:English
English
出版: Elsevier 2019
主题:
在线阅读:http://irep.iium.edu.my/72023/1/Ng%20et%20al.%20-%202018%20-%20Fluid-Solid%20Conjugate%20Heat%20Transfer%20Modelling%20using%20Weakly%20Compressible%20Smoothed%20Particle%20Hydrodynamics%20-%20Internation.pdf
http://irep.iium.edu.my/72023/8/72023%20Fluid-Solid%20conjugate%20SCOPUS.pdf
http://irep.iium.edu.my/72023/
https://www.sciencedirect.com/science/article/pii/S002074031833443X
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:To date, the Smoothed Particle Hydrodynamics (SPH) method which is mesh-less and fully Lagrangian in nature has been mainly applied in solving solid heat conduction problem and flow convection problem separately. In the current work, we have implemented the Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method to solve internal flow problem involving fluid-solid Conjugate Heat Transfer (CHT). In order to ensure heat flux continuity across the interface separating two different materials, the harmonic mean value of thermal conductivities was adopted when modelling the heat transfer between fluid and solid bodies. On the modelling of non-isothermal hydrodynamically fully-developed channel flow, the Dirichlet inlet temperature boundary condition was implemented without having to build a separate temperature reset zone as proposed in the open literature. From the current study, we have found that the particle shifting algorithm is efficient to address the tensile instability problem encountered when simulating flow at high Reynolds number. The WCSPH results were compared against the established analytical and numerical solutions and good agreement was found. The idea of extending the WCSPH method to simulate the flow and heat transfer in parallel-flow and counter-flow heat exchangers was pursued in the current study as well.