On a generalized self-similarity in the p-Adic field

In the present paper, we introduce a new set which defines a generalized self-similar set for contractive functions {fi}i=1N on the unit ball â&;p of p-Adic numbers. This set is called unconventional limit set. We prove that the unconventional limit set is compact, perfect and uniformly disconne...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Mukhamedov, Farrukh M., Khakimov, Otabek
التنسيق: مقال
اللغة:English
English
منشور في: World Scientific Publishing Co. Pte Ltd 2016
الموضوعات:
الوصول للمادة أونلاين:http://irep.iium.edu.my/58854/1/58854_On%20a%20generalized%20self-similarity%20in%20the%20p-Adic%20field_article.pdf
http://irep.iium.edu.my/58854/2/58854_On%20a%20generalized%20self-similarity%20in%20the%20p-Adic%20field_scopus.pdf
http://irep.iium.edu.my/58854/
http://www.worldscientific.com/doi/pdf/10.1142/S0218348X16500419
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:In the present paper, we introduce a new set which defines a generalized self-similar set for contractive functions {fi}i=1N on the unit ball â&;p of p-Adic numbers. This set is called unconventional limit set. We prove that the unconventional limit set is compact, perfect and uniformly disconnected. Moreover, we provide an example of two contractions for which the corresponding unconventional limiting set is quasi-symmetrically equivalent to the symbolic Cantor set.