CNN-IDS: Convolutional Neural Network for network intrusion detection system

The field of information technology is undergoing a global revolution; information is exchanged globally. Such action requires the existence of an effective data and network protection system. IDS can provide security, protect the network from attacks and threats, and identify potential security bre...

詳細記述

保存先:
書誌詳細
主要な著者: Halbouni, Asmaa Hani, Gunawan, Teddy Surya, Halbouni, Murad, Abdullah Assaig, Faisal Ahmed, Effendi, Mufid Ridlo, Ismail, Nanang
フォーマット: Conference or Workshop Item
言語:English
English
出版事項: IEEE 2022
主題:
オンライン・アクセス:http://irep.iium.edu.my/101869/7/101869_CNN-IDS_Convolutional%20nureal%20network%20for%20network%20Intrusion%20Detection%20System.pdf
http://irep.iium.edu.my/101869/13/101869_CNN-IDS%20Convolutional%20Neural%20Network%20for%20network%20intrusion%20detection%20system_SCOPUS.pdf
http://irep.iium.edu.my/101869/
https://icwt-seei.org/2022/conference-program/
https://doi.org/10.1109/ICWT55831.2022.9935478
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:The field of information technology is undergoing a global revolution; information is exchanged globally. Such action requires the existence of an effective data and network protection system. IDS can provide security, protect the network from attacks and threats, and identify potential security breaches. In this paper, we developed a convolutional neural network-based intrusion detection system that was evaluated using the CIC-IDS2017 dataset. For newly public datasets, our model aims to deliver a low false alarm rate, high accuracy, and a high detection rate. The model achieved a 99.55 percent detection rate and 0.12 FAR using CIC-IDS2017 multiclass classification.