CNN-IDS: Convolutional Neural Network for network intrusion detection system
The field of information technology is undergoing a global revolution; information is exchanged globally. Such action requires the existence of an effective data and network protection system. IDS can provide security, protect the network from attacks and threats, and identify potential security bre...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , |
---|---|
التنسيق: | Conference or Workshop Item |
اللغة: | English English |
منشور في: |
IEEE
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | http://irep.iium.edu.my/101869/7/101869_CNN-IDS_Convolutional%20nureal%20network%20for%20network%20Intrusion%20Detection%20System.pdf http://irep.iium.edu.my/101869/13/101869_CNN-IDS%20Convolutional%20Neural%20Network%20for%20network%20intrusion%20detection%20system_SCOPUS.pdf http://irep.iium.edu.my/101869/ https://icwt-seei.org/2022/conference-program/ https://doi.org/10.1109/ICWT55831.2022.9935478 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | The field of information technology is undergoing a global revolution; information is exchanged globally. Such action requires the existence of an effective data and network protection system. IDS can provide security, protect the network from attacks and threats, and identify potential security breaches. In this paper, we developed a convolutional neural network-based intrusion detection system that was evaluated using the CIC-IDS2017 dataset. For newly public datasets, our model aims to deliver a low false alarm rate, high accuracy, and a high detection rate. The model achieved a 99.55 percent detection rate and 0.12 FAR using CIC-IDS2017 multiclass classification. |
---|