Electrical circuit modeling for the relaxor response of bismuth magnesium tantalate pyrochlore

The electrical properties of bismuth magnesium tantalate pyrochlore, Bi3.30Mg1.88Ta2.82O13.88 (BMT) were investigated by both inductor-capacitor-resistor (LCR) and impedance spectroscopy techniques covering a broad temperature range of 10–1073 K and a frequency range of 5 Hz - 1 MHz. At below ∼180 K...

Full description

Saved in:
Bibliographic Details
Main Authors: Tan, P.Y., Tan, K.B., Khaw, C.C., Murthy, H.C. Ananda, Balachandran, R., Chen, S.K., Lee, O.J., Chan, K.Y., Lu, M.
Format: Article
Language:English
Published: Elsevier 2024
Online Access:http://psasir.upm.edu.my/id/eprint/112782/1/112782.pdf
http://psasir.upm.edu.my/id/eprint/112782/
https://www.sciencedirect.com/science/article/pii/S2468217924000467?via%3Dihub
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The electrical properties of bismuth magnesium tantalate pyrochlore, Bi3.30Mg1.88Ta2.82O13.88 (BMT) were investigated by both inductor-capacitor-resistor (LCR) and impedance spectroscopy techniques covering a broad temperature range of 10–1073 K and a frequency range of 5 Hz - 1 MHz. At below ∼180 K, BMT pyrochlore exhibited interesting relaxor behaviour that showed high dispersion characteristics in its frequency-temperature dependent dielectric constants, ε′ and dielectric losses, tan δ, respectively. The maximum ε′max of ∼77 was obtained at the temperature maximum, Tm of 154 K. The frequency-independent ε′ data above 154 K at a fixed frequency of 1 MHz can be well fitted with the Curie-Weiss law and the relaxation features of Bi3.30Mg1.88Ta2.82O13.88 obeyed the Vogel-Fulcher equation. The dielectric properties of Bi3.30Mg1.88Ta2.82O13.88 relaxor in the low temperature range of 20–320 K could be satisfactorily modeled with different equivalent circuits. In this perspective, a master circuit consisting of a parallel R-C-CPE element in series with a capacitor was required to accurately fit the low temperature data.