Effect of surface modification on mechanical properties of buri palm (Corypha Utan) fibre composite reinforcement

Natural fibre materials are replacing synthetic fibre materials since they are considered as a low-cost, lightweight, and biodegradability engineering materials with a good specific strength. However, the effects of some process and geometrical parameters (such as fibre type, size, and concentration...

Full description

Saved in:
Bibliographic Details
Main Authors: M., Zalinawati, Siregar, J. P., Tezara, C., Jaafar, J., M. H. M., Hamdan, Oumer, A. N., T., Rihayat
Format: Article
Language:English
Published: Universiti Malaysia Pahang 2020
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/30816/1/Effect%20of%20surface%20modification%20on%20mechanical%20properties%20of%20buri%20palm.pdf
http://umpir.ump.edu.my/id/eprint/30816/
https://doi.org/10.15282/ijame.17.4.2020.07.0627
https://doi.org/10.15282/ijame.17.4.2020.07.0627
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.ump.umpir.30816
record_format eprints
spelling my.ump.umpir.308162021-05-21T09:05:45Z http://umpir.ump.edu.my/id/eprint/30816/ Effect of surface modification on mechanical properties of buri palm (Corypha Utan) fibre composite reinforcement M., Zalinawati Siregar, J. P. Tezara, C. Jaafar, J. M. H. M., Hamdan Oumer, A. N. T., Rihayat TJ Mechanical engineering and machinery Natural fibre materials are replacing synthetic fibre materials since they are considered as a low-cost, lightweight, and biodegradability engineering materials with a good specific strength. However, the effects of some process and geometrical parameters (such as fibre type, size, and concentration, and chemical modification) on the strength of the final natural composite product are not well documented. The purpose of the research is to analyse the physical and mechanical properties of single-strand buri palm fibre under different conditions and surface modification. The buri palm fibre was treated using 5 wt.% and 10 wt.% sodium hydroxide (NaOH) with a duration of 1 and 24 h immersion throughout the whole process. For a single-strand test, the samples were carefully extracted from the corresponding woven fibre by hand. While the woven buri palm fibre composite was fabricated by employing 4 and 5-layering sequences in the hand lay-up technique followed by the compression method. The buri palm fibre showed that a higher concentration of NaOH solution and immersion period led to a lower density. The effectiveness of the alkali treatment in the removal of cellulose and hemicellulose from the fibre strands was verified by chemical composition in FTIR investigation. The highest tensile strength of 159.16 MPa was indicated from the result of single-strand treated with 5 wt.% NaOH for 24 h immersion. This treatment was found as the most appropriate treatment and is employed to fabricate both 4-layer and 5-layer stacking sequence composite. The 5-layer treated composite gives the highest tensile strength and flexural strength of 33.51 MPa and 56.72 MPa, respectively. In conclusion, the mechanical properties increased with the addition of each sequence layering treated fibres in the composite. The obtained results indicate that the utilisation of buri palm fibre as a reinforcement in the epoxy composite can be used in the lightweight and moderate load applications, such as the interior parts in the automotive industry. Universiti Malaysia Pahang 2020-12-29 Article PeerReviewed pdf en cc_by_nc_4 http://umpir.ump.edu.my/id/eprint/30816/1/Effect%20of%20surface%20modification%20on%20mechanical%20properties%20of%20buri%20palm.pdf M., Zalinawati and Siregar, J. P. and Tezara, C. and Jaafar, J. and M. H. M., Hamdan and Oumer, A. N. and T., Rihayat (2020) Effect of surface modification on mechanical properties of buri palm (Corypha Utan) fibre composite reinforcement. International Journal of Automotive and Mechanical Engineering (IJAME), 17 (4). pp. 8298-8309. ISSN 2229-8649 (Print); 2180-1606 (Online) https://doi.org/10.15282/ijame.17.4.2020.07.0627 https://doi.org/10.15282/ijame.17.4.2020.07.0627
institution Universiti Malaysia Pahang
building UMP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang
content_source UMP Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
M., Zalinawati
Siregar, J. P.
Tezara, C.
Jaafar, J.
M. H. M., Hamdan
Oumer, A. N.
T., Rihayat
Effect of surface modification on mechanical properties of buri palm (Corypha Utan) fibre composite reinforcement
description Natural fibre materials are replacing synthetic fibre materials since they are considered as a low-cost, lightweight, and biodegradability engineering materials with a good specific strength. However, the effects of some process and geometrical parameters (such as fibre type, size, and concentration, and chemical modification) on the strength of the final natural composite product are not well documented. The purpose of the research is to analyse the physical and mechanical properties of single-strand buri palm fibre under different conditions and surface modification. The buri palm fibre was treated using 5 wt.% and 10 wt.% sodium hydroxide (NaOH) with a duration of 1 and 24 h immersion throughout the whole process. For a single-strand test, the samples were carefully extracted from the corresponding woven fibre by hand. While the woven buri palm fibre composite was fabricated by employing 4 and 5-layering sequences in the hand lay-up technique followed by the compression method. The buri palm fibre showed that a higher concentration of NaOH solution and immersion period led to a lower density. The effectiveness of the alkali treatment in the removal of cellulose and hemicellulose from the fibre strands was verified by chemical composition in FTIR investigation. The highest tensile strength of 159.16 MPa was indicated from the result of single-strand treated with 5 wt.% NaOH for 24 h immersion. This treatment was found as the most appropriate treatment and is employed to fabricate both 4-layer and 5-layer stacking sequence composite. The 5-layer treated composite gives the highest tensile strength and flexural strength of 33.51 MPa and 56.72 MPa, respectively. In conclusion, the mechanical properties increased with the addition of each sequence layering treated fibres in the composite. The obtained results indicate that the utilisation of buri palm fibre as a reinforcement in the epoxy composite can be used in the lightweight and moderate load applications, such as the interior parts in the automotive industry.
format Article
author M., Zalinawati
Siregar, J. P.
Tezara, C.
Jaafar, J.
M. H. M., Hamdan
Oumer, A. N.
T., Rihayat
author_facet M., Zalinawati
Siregar, J. P.
Tezara, C.
Jaafar, J.
M. H. M., Hamdan
Oumer, A. N.
T., Rihayat
author_sort M., Zalinawati
title Effect of surface modification on mechanical properties of buri palm (Corypha Utan) fibre composite reinforcement
title_short Effect of surface modification on mechanical properties of buri palm (Corypha Utan) fibre composite reinforcement
title_full Effect of surface modification on mechanical properties of buri palm (Corypha Utan) fibre composite reinforcement
title_fullStr Effect of surface modification on mechanical properties of buri palm (Corypha Utan) fibre composite reinforcement
title_full_unstemmed Effect of surface modification on mechanical properties of buri palm (Corypha Utan) fibre composite reinforcement
title_sort effect of surface modification on mechanical properties of buri palm (corypha utan) fibre composite reinforcement
publisher Universiti Malaysia Pahang
publishDate 2020
url http://umpir.ump.edu.my/id/eprint/30816/1/Effect%20of%20surface%20modification%20on%20mechanical%20properties%20of%20buri%20palm.pdf
http://umpir.ump.edu.my/id/eprint/30816/
https://doi.org/10.15282/ijame.17.4.2020.07.0627
https://doi.org/10.15282/ijame.17.4.2020.07.0627
_version_ 1701163144480555008
score 13.1944895